Combined finite element - particles discretisation for simulation of transport-dispersion in porous media
نویسندگان
چکیده
Combining finite element together with particle methods provide one of the best compromise for solving transport problem in porous media. Saturated or non-saturated flows are determined by boundary condition and the media permeability. For real terrain, permeability can consist in various almost constant and imbricated zones with complex shapes. Thus, it is of some interest that the boundary between two adjacent zones coincides with a natural mesh interface and that each element is entirely contains in one such zone. Beside this, solving transport equation by means of particle methods offers two distinctive advantages. The method is unconditionally stable when applied to a pure convective equation, and it does not contain any numerical diffusion if the particle trajectories are correctly computed. Therefore the combination of finite elements and particle method appears to be a straightforward application of the principle : ”the right method at the right place”. Although the previous statement provide a consistent basis to build a numerical model, there still remain some options in the choice of the two components themself. To start with, it has long been recognised that the computed flow must satisfied as much as possible the divergence free condition; this can be achieved by selecting a non-conforming or mixed method. Second, there exist many way to design particles methods for the convective part as well as for the dispersion term. For the first one, a so-called streamline method
منابع مشابه
Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media
The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...
متن کاملRandom-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods
The random-walk method for simulating solute transport in porous media is typically based on the assumption that the velocity and velocity-dependent dispersion tensor vary smoothly in space. However, in cases where sharp interfaces separate materials with contrasting hydraulic properties, these quantities may be discontinuous. Normally, velocities are interpolated to arbitrary particle location...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملDispersion of charged tracers in charged porous media
We report a lattice-Boltzmann scheme to compute the dispersion of charged tracers in charged porous media under the combined effect of advection, diffusion and electro-migration. To this end, we extend the moment propagation approach, introduced to study the dispersion of neutral tracers (Lowe C. and Frenkel D., Phys. Rev. Lett., 77 (1996) 4552), to include the effect of electrostatic forces. T...
متن کاملThree-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کامل